Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Digamber G. Porob and T. N. Guru Row*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Synthesis and structure of $M_{0.5} B_{3} \mathbf{P}_{2} \mathrm{O}_{10}(M=\mathrm{Ca}, \mathrm{Sr}$, Ba, Pb) series

Abstract

A series of $M_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$ compounds with $M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and Pb have been synthesized in $\mathrm{MO}-\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ ternary systems by the ceramic method and the crystal structures were then solved using single-crystal X-ray diffraction data. These compounds are isostructural with $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ (triclinic, space group $P \overline{1}, Z=2$). The structures consist of infinite chains of $\mathrm{Bi}_{2} \mathrm{O}_{2}$ units along the c axis formed by linking BiO_{8} and BiO_{6} polyhedra. These chains are interconnected by MO_{8} polyhedra forming two-dimensional layers in the ac plane. The phosphate tetrahedra are sandwiched between these layers.

1. Introduction

Studies of the $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ binary system and metal-doped $\mathrm{Bi}_{4} \mathrm{~V}_{2} \mathrm{O}_{11}$, generally known as BIMEVOX, have been intensive because of the high ionic conductivity found in these compounds (Kendall et al., 1996). Many $\mathrm{MO}-\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{X}_{2} \mathrm{O}_{5}$ ($M=$ divalent cation and $X=\mathrm{P}, \mathrm{V}$, As) ternary systems have been studied to synthesize novel materials with a high ionic conductivity (Ketatni et al., 1998; Giraud et al., 2000). During the study of the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ system, Sinclair et al. $(1998,1999)$ isolated the new compound $\mathrm{NaBi}_{3} \mathrm{~V}_{2} \mathrm{O}_{10}$ in the $M_{2} \mathrm{O}-\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}$ ternary system. The structure was solved by $a b$ initio powder X-ray diffraction (Porob \& Guru Row, 2000). The structure was later confirmed by combined single-crystal and neutron diffraction studies (Bliesner et al., 2001). $\mathrm{Bi}_{4} \mathrm{~V}_{2} \mathrm{O}_{11}$ has a layered structure with $\mathrm{Bi}_{2} \mathrm{O}_{2}$ sheets alternating with perovskite-like layers. The substitution of one bismuth ion by a monovalent ion such as sodium breaks the $\mathrm{Bi}_{2} \mathrm{O}_{2}$ sheets into $\mathrm{Bi}_{2} \mathrm{O}_{2}$ chains. We have continued our studies on the systems involving $M_{2}^{\prime} \mathrm{O}-\mathrm{Bi}_{2} \mathrm{O}_{3}-X_{2} \mathrm{O}_{5}$ and $\mathrm{MO}-\mathrm{Bi}_{2} \mathrm{O}_{3}-X_{2} \mathrm{O}_{5}$, where M^{\prime} and M are univalent and bivalent cations, and $X=\mathrm{P}$ and V , in search of new and intricate motifs using chemical crystallographic concepts. Abraham et al. (2002) have conducted extensive studies on several bismuth-based oxyphosphates and oxyvanadates. During the detailed phase diagram study of $2 \mathrm{Bi}_{2} \mathrm{O}_{3}-7 \mathrm{BiPO}_{4}$, a phase which was stable above 1183 K was identified. Later, during the investigation of the $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{CoO}$ system, single crystals of this phase were obtained and the subsequent structural analysis gave the composition $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20} \cdot \mathrm{Bi}_{3.33} \mathrm{P}_{2} \mathrm{O}_{10}$ (Ketatni et al., 1998). It was reported that the substitution of 0.67 Bi by a divalent cations such as $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}$ or Cd , or of 0.16 Bi by a monovalent cation such as Li , Na or K would lead to stabilization of this phase at room temperature. Studies by Giraud et al. (2000) on

Received 15 July 2003
Accepted 4 August 2003

Table 1
Experimental table.

	CBPO	SBPO	BBPO	PBPO
Crystal data				
Chemical formula	$\mathrm{Bi}_{3} \mathrm{Ca}_{0.5} \mathrm{O}_{10} \mathrm{P}_{2}$	$\mathrm{Bi}_{3} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Sr}_{0.5}$	$\mathrm{Ba}_{0.5} \mathrm{Bi}_{3} \mathrm{O}_{10} \mathrm{P}_{2}$	$\mathrm{Bi}_{3} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~Pb}_{0.5}$
M_{r}	868.92	892.7	917.55	952.47
Cell setting, space group	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$
a, b, c (A)	$\begin{aligned} & 6.9100(9), 7.5426(10), \\ & 9.2027(12) \end{aligned}$	$\begin{aligned} & 6.964(2), 7.568(2), \\ & 9.207(3) \end{aligned}$	$\begin{aligned} & 7.0141(9), 7.6084(10), \\ & 9.2525(12) \end{aligned}$	7.029 (4), 7.627 (4), 9.268 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 107.053 \text { (2), } 93.812 \text { (2), } \\ & 112.278 \text { (2) } \end{aligned}$	$\begin{aligned} & 107.196 \text { (4), } 93.527 \text { (4), } \\ & 112.106(4) \end{aligned}$	$\begin{aligned} & 107.339 \text { (2), } 93.086 \text { (2), } \\ & 112.294 \text { (2) } \end{aligned}$	$\begin{aligned} & 107.295 \text { (7), } 93.400(7), \\ & 112.067(7) \end{aligned}$
$V\left(\AA^{3}\right)$	415.68 (9)	421.2 (2)	428.24 (10)	431.4 (4)
Z	2	2	2	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	6.942	7.039	7.116	7.333
Radiation type	Mo $K \alpha$	Mo K α	Mo K α	Mo K α
No. of reflections for cell parameters	4853	4394	4758	4345
θ range (${ }^{\circ}$)	2.4-28.0	2.4-27.7	3.1-28.0	2.4-27.6
$\mu\left(\mathrm{mm}^{-1}\right)$	64.08	66.07	64.16	71.16
Temperature (K)	293 (2)	293 (2)	293 (2)	293 (2)
Crystal form, color	Block, colorless	Block, colorless	Block, colorless	Block, colorless
Crystal size (mm)	$0.10 \times 0.09 \times 0.08$	$0.14 \times 0.12 \times 0.10$	$0.09 \times 0.08 \times 0.07$	$0.08 \times 0.07 \times 0.06$
Data collection				
Diffractometer Data collection method	Bruker APEX SMART CCD area detector			
Absorption correction	Numerical	Numerical	${ }^{\omega}$ Numerans	${ }^{\omega}$ Numerans
$T_{\text {min }}$	0.004	0.003	0.005	0.002
$T_{\text {max }}$	0.017	0.014	0.018	0.013
No. of measured, independent and observed reflections	4853, 1921, 1651	4394, 1881, 1685	4758, 1968, 1740	4345, 1905, 1707
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.068	0.049	0.049	0.043
$\theta_{\text {max }}\left({ }^{\circ}\right)$	28.0	27.7	28.0	27.6
Range of h, k, l	$-8 \Rightarrow h \Rightarrow 9$	$-9 \Rightarrow h \Rightarrow 9$	$-9 \Rightarrow h \Rightarrow 9$	$-9 \Rightarrow h \Rightarrow 9$
	$-9 \Rightarrow k \Rightarrow 9$	$-9 \Rightarrow k \Rightarrow 9$	$-9 \Rightarrow k \Rightarrow 9$	$-10 \Rightarrow k \Rightarrow 10$
	$-12 \Rightarrow l \Rightarrow 12$	$-11 \Rightarrow l \Rightarrow 11$	$-12 \Rightarrow l \Rightarrow 11$	$-12 \Rightarrow l \Rightarrow 12$
Refinement				
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.057, 0.155, 1.05	0.069, 0.184, 1.02	0.069, 0.182, 1.06	0.062, 0.176, 1.07
No. of relections	1921	1881	1968	1905
No. of parameters	142	142	142	142
Weighting scheme	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1072 P)^{2}\right], \\ \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.128 P)^{2}+\right. \\ & 18.6788 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0871 P)^{2}+\right. \\ & 67.3458 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1309 P)^{2}+\right. \\ & 1.2985 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\text {max }}$	<0.0001	0.003	0.001	0.002
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	3.82, -7.94	4.18, -10.81	8.86, -9.43	6.07, -5.95

Computer programs: SMART and SAINT (Bruker, 1998), SHELXS97 and SHELXL97 (Sheldrick, 1997), ORTEP3 for Windows (Farrugia, 1997), PLATON (Spek, 1990).
$\mathrm{PbBi}_{6} X_{4} \mathrm{O}_{20}$ ($X=\mathrm{P}, \mathrm{V}$ and As) using the Rietveld method on X-ray powder data proved that stabilization could indeed occur. In order to systematically investigate the nature and extent of substitution in this compound we have studied the divalent cation-doped series $M_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$ with $M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and Pb . The formula $M_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$ will be used for this series of compounds rather than $M \mathrm{Bi}_{6} \mathrm{P}_{4} \mathrm{O}_{20}$ in order to preserve the analogy with the $\mathrm{NaBi}_{3} \mathrm{~V}_{2} \mathrm{O}_{10}$ system we have previously studied. Here we report the synthesis and detailed singlecrystal structure analysis of four compounds in the MO $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ system, namely $\mathrm{Ca}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \quad$ (CBPO), $\mathrm{Sr}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \quad(\mathrm{SBPO}), \quad \mathrm{Ba}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \quad(\mathrm{BBPO})$ and $\mathrm{Pb}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$ (PBPO).

2. Experimental

2.1. Synthesis

$M_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}(M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Pb})$ were prepared by the conventional solid-state reaction of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{CaCO}_{3}, \mathrm{SrCO}_{3}$, $\mathrm{BaCO}_{3}, \mathrm{PbO}$ and $(\mathrm{NH})_{2} \mathrm{HPO}_{4}$ (all AR grade) reagents. The reaction mixtures of the respective stoichiometries were weighed from the starting reagents, ground together in an agate pestle and mortar, and fired in a platinum crucible initially at 573 K for 2 h to decompose $(\mathrm{NH})_{2} \mathrm{HPO}_{4}$ and later ground and reheated to 1173 for 2 d with intermediate grinding. Powder X-ray diffraction patterns were recorded to

Table 2
Bond lengths (\AA) and bond-valence sum (Hormillosa, 1993) in CBPO, SBPO, BBPO and PBPO.

O and O^{\prime} are symmetry-related O atoms.

	CBPO	SBPO	BBPO	PBPO
Bi1-O1	2.174 (10)	2.155 (13)	2.177 (16)	2.177 (11)
Bi1-O1'	2.272 (11)	2.290 (13)	2.266 (18)	2.284 (12)
Bi1-O3	2.445 (10)	2.477 (14)	2.485 (19)	2.513 (14)
Bi1-O7	2.339 (12)	2.308 (13)	2.321 (19)	2.346 (14)
Bi1-O8	2.387 (12)	2.409 (15)	2.405 (19)	2.443 (13)
Bi1-O9	2.719 (11)	2.720 (14)	2.731 (16)	2.741 (13)
BVS	2.965	2.964	2.926	2.788
Bi2-O1	2.573 (10)	2.574 (13)	2.596 (17)	2.603 (12)
Bi2-O3	2.573 (11)	2.626 (13)	2.662 (19)	2.645 (11)
Bi2-O4	2.226 (12)	2.252 (14)	2.295 (19)	2.279 (12)
$\mathrm{Bi} 2-\mathrm{O} 4{ }^{\prime}$	2.372 (11)	2.398 (14)	2.441 (19)	2.422 (13)
Bi2-O5	2.449 (11)	2.423 (14)	2.470 (24)	2.449 (13)
Bi2-O6	2.397 (11)	2.422 (16)	2.499 (22)	2.453 (14)
Bi2-O7	2.756 (12)	2.772 (14)	2.804 (21)	2.786 (15)
Bi2-O10	2.626 (13)	2.663 (17)	2.347 (19)	2.735 (14)
BVS	3.254	2.800	2.475	2.591
Bi3-O1	2.301 (11)	2.289 (13)	2.290 (17)	2.315 (12)
$\mathrm{Bi} 3-\mathrm{O} 2$	2.424 (10)	2.441 (14)	2.463 (19)	2.471 (12)
Bi3-O4	2.093 (12)	2.099 (13)	2.100 (19)	2.112 (13)
Bi3-O8	2.946 (12)	2.913 (14)	2.957 (19)	2.995 (12)
Bi3-O9	2.269 (11)	2.279 (13)	2.255 (17)	2.284 (12)
Bi3-O10	2.320 (12)	2.331 (14)	2.347 (19)	2.368 (12)
BVS	3.248	3.212	3.192	3.027
$M-\mathrm{O} 2 \times 2$	2.484 (13)	2.587 (15)	2.633 (19)	2.616 (14)
$M-\mathrm{O} 4 \times 2$	2.704 (11)	2.707 (15)	2.722 (23)	2.768 (14)
M-O5 $\times 2$	2.384 (13)	2.490 (14)	2.494 (22)	2.530 (14)
$M-\mathrm{O} 6 \times 2$	2.537 (12)	2.616 (14)	2.612 (21)	2.650 (14)
BVS	1.842	2.224	3.356	1.966
$\mathrm{P} 1-\mathrm{O} 3$	1.558 (11)	1.542 (14)	1.549 (21)	1.549 (11)
P1-O5	1.535 (12)	1.552 (14)	1.544 (19)	1.549 (14)
P1-O8	1.556 (12)	1.556 (14)	1.535 (19)	1.537 (12)
P1-O10	1.578 (12)	1.565 (15)	1.547 (21)	1.525 (13)
BVS	4.711	4.747	4.864	4.927
$\mathrm{P} 2-\mathrm{O} 2$	1.536 (12)	1.553 (15)	1.548 (18)	1.578 (13)
P2-O6	1.535 (11)	1.538 (16)	1.517 (19)	1.534 (15)
P2-O7	1.533 (12)	1.523 (14)	1.514 (20)	1.525 (13)
P2-O9	1.549 (12)	1.539 (13)	1.547 (18)	1.550 (12)
BVS	4.950	4.951	5.065	4.843

confirm the formation of a single phase. The single crystals in each case were grown by melting the product in a platinum crucible at 1373 K (1448 K for CBPO) and slowly cooling to room temperature at a rate of $6 \mathrm{~K} \mathrm{~h}^{-1}$. EDAX (energydispersive analysis by X-rays) analysis on the crystallites confirms the formation of the compound in the desired ratio and that there is no trace of the starting reagents. X-ray powder diffraction data of the polycrystalline samples were recorded on a Stoe/Stadi-P X-ray powder diffractometer with germanium-monochromated $\mathrm{Cu} K \alpha_{1}(\lambda=1.54056 \AA)$ radiation from a sealed-tube X-ray generator $(30 \mathrm{kV}, 25 \mathrm{~mA})$ in the transmission mode using a linear PSD (position-sensitive detector).

2.2. Crystal structure

The data sets were collected on a Bruker APEX SMART CCD system (Mo $K \alpha, \lambda=0.7107 \AA$). The initial unit cell was

Table 3
Comparative ionic radius and cell volume in $M_{05} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$ compounds.

Formula	M cation	Ionic radius (Shannon, 1976)	Cell volume
$\mathrm{Bi}_{0.33} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$	Bi^{3+}	1.17	$417.90^{(a)}$
$\mathrm{Ca}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$	Ca^{2+}	1.12	415.68
$\mathrm{Sr}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$	Sr^{2+}	1.26	421.20
$\mathrm{Ba}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$	Ba^{2+}	1.42	428.24
$\mathrm{~Pb}_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$	$\mathrm{~Pb}^{2+}$	1.29	431.40

Reference: (a) Ketatni et al. (1998).
determined using a least-squares analysis of a random set of reflections collected from three sets of 0.3° wide ω scans (50 frames per set) that were well distributed in reciprocal space. Data frames were collected with 0.3° wide ω scans, 10 s per frame, 606 frames per set. Four complete sets were collected, using a crystal-to-detector distance of 6.03 cm , thus providing a complete sphere of data. The final unit-cell parameters were obtained and refined using all the reflections. SMART (Bruker, 1998) software was used for data acquisition and SAINT software (Bruker, 1998) for data integration. The structure determination was satisfactorily achieved in space group $P \overline{1}$. The structure was solved by direct methods using the SHELXS97 module in the WinGX suite of software (Farrugia, 1999). The positions of three Bi atoms and one M atom were obtained from the Fourier map. Two P and ten O atoms were subsequently located by difference-Fourier synthesis. The positional parameters and anisotropic displacement parameters of all the atoms were refined using SHELXL97 (Sheldrick, 1997). Experimental details are given in Table 1. ${ }^{1}$

3. Results and discussion

The atomic fractional coordinates and displacement parameters for CBPO, SBPO, BBPO and PBPO are given in the supplementary data. Selected bond lengths and the bondvalence sum are given in Table 2. The crystal structures of $\mathrm{CBPO}, \mathrm{SBPO}, \mathrm{BBPO}$ and PBPO are isostructural to $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$. The bismuth ion with 0.67 occupancy in $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ is replaced by one divalent cation $M(M=\mathrm{Ca}, \mathrm{Sr}$, $\mathrm{Ba}, \mathrm{Pb})$. The structures of CBPO, SBPO, BBPO and PBPO have similar bond lengths and polyhedral distortions. The oxygen environment around $\mathrm{Bi} 1, \mathrm{Bi} 2, \mathrm{Bi} 3$ and Ca in CBPO are shown in Fig. 1, which serves as a representative for all four compounds. The Bi 1 and Bi 3 atoms are coordinated to six O atoms forming BiO_{6} polyhedra. The effect of the $6 s^{2}$ lone pair on these Bi atoms is clearly evidenced by the distorted geometry of these polyhedra. The Bi1 atom has five relatively short bonds (2.155-2.485 \AA) with $\mathrm{O} 1, \mathrm{O}^{\prime}, \mathrm{O} 3, \mathrm{O} 7$ and O8 on one side, while O9 forms a long bond $(2.719-2.731 \AA)$ on the other side which would host the lone pair. A similar coordination is observed in the case of Bi 3 . The five O atoms $\mathrm{O} 1, \mathrm{O} 2$, $\mathrm{O} 4, \mathrm{O} 9$ and O 10 form five relatively short bonds (2.093-

[^0]$2.463 \AA$) on one side, while O8 forms a long bond (2.911$2.958 \AA$) on the other side. The Bi2 and M cations are bonded to eight O atoms. The BiO_{8} coordination is highly distorted with two distinct types of bond length as observed in other Bi atoms, a clear signature of the lone-pair effect. The M atom occupies a special position and is coordinated to eight O atoms, two each of $\mathrm{O} 2, \mathrm{O} 4, \mathrm{O} 5$ and O 6 forming a distorted $M \mathrm{O}_{8}$ polyhedron. It is noteworthy that the M cation has a high anisotropy in thermal parameters compared with the Bi atoms. A similar situation existed in the structure of $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ (Ketatni et al., 1998). The bond-valence sum calculation for the M site (Table 2) suggests a possible split on either side of the center of symmetry where the M atom resides. Such a split would allow for a larger thermal parameter if the M atom were

Figure 1
Oxygen environment of Ca and Bi atoms in CBPO .

Figure 2
Structure of CBPO viewed down the c axis.
restrained to the $\overline{1}$ site. However, refinement based on a 'splitatom model' resulted in oscillations and convergence could be attained only by fixing the atom at the center of symmetry, as was also found in the structure of $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ (Ketatni et al., 1998). The P1 and P2 atoms occupy the central interstitial of regular phosphate tetrahedra. The $\mathrm{P}-\mathrm{O}$ bond lengths are listed in Table 2. The crystal structure can be described as built

Figure 3
A perspective view of $\mathrm{Bi}_{2} \mathrm{O}_{2}$ chains formed by $\left(\mathrm{Bi}_{6} \mathrm{O}_{4}\right)$ blocks (shown in the box).

Figure 4
View of $\mathrm{Bi}_{2} \mathrm{O}_{2}$ chains linked via the M cation forming a 'step-like arrangement' with P atoms sitting on the step.
from $\mathrm{Bi}_{2} \mathrm{O}_{2}$ chains interlinked via M cations forming a slab with PO_{4} tetrahedra residing between these slabs (Fig. 2). The packing diagram of CBPO viewed down the c axis (representative example for the entire series) is shown in Fig. 2. The $\mathrm{Bi}_{6} \mathrm{O}_{4}$ block forms a basic repeat unit of the chain formed by

Figure 5
X-ray powder pattern of CBPO, SBPO, BBPO and PBPO.

Figure 6
Plot of the ionic radius of M cations versus unit-cell volume of $M_{0.5} \mathrm{Bi}_{3} \mathrm{P}_{2} \mathrm{O}_{10}$.
$\mathrm{O} 1, \mathrm{O} 4$ and Bi atoms. The $\mathrm{Bi}_{6} \mathrm{O}_{4}$ blocks are interconnected through two symmetry-related O atoms, O 4 and O^{\prime}, resulting in the formation of an infinite $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)$ chain (Fig. 3) which extends along the c axis. The M cation then links the $\mathrm{Bi}_{2} \mathrm{O}_{2}$ chains in the ac plane to form a slab by bonding to the O 4 atom of each chain. A perpendicular view of the chains indicates $\mathrm{Bi}_{6} \mathrm{O}_{4}$ and the M cation forming a 'step-like structure' with P atoms sitting on each step (Fig. 4).

The powder patterns of these compounds show a clear change from that of $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ as the M cation changes from Bi to $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and Pb (Fig. 5). The effect of a change in cation is also reflected in the unit-cell parameters and volume. The volume is the least for CBPO (the smallest M ion) and the greatest for BBPO (the largest M ion) and there is a linear dependence of the ionic radius with the volume of the unit cell (Table 3, Fig. 6). The bond-valence sum (BVS) values calculated for all the cations indicate regular bonding features. However, the BVS for Ba in BBPO is rather high (3.38), which is a result of short bonds. This could be due to the size effect of the Ba ion in this lattice, a limiting factor to the retention of this structural type. The structural analyses prove unequivocally that the substitution of 0.67 Bi in $\mathrm{Bi}_{6.67} \mathrm{P}_{4} \mathrm{O}_{20}$ by a divalent cation such as $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ or Pb leads to the stabilization of this phase at room temperature.

We thank the Department of Science and Technology, India, for data collection on the CCD facility setup under the IRFA-DST program. Digamber Porob thanks CSIR, New Delhi, for the award of a fellowship.

References

Abraham, F., Cousin, O., Mentre, O. \& Ketatni El. M. (2002). J. Solid State Chem. 167, 168-181.
Bliesner, R., Uma, S., Yokochi, A. \& Sleight A. W. (2001). Chem. Mater. 13, 3825-3826.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Giraud, S., Drache, M., Conflant, P., Wignacourt, J. P. \& Steinfink, H. (2000). J. Solid State Chem. 154, 435-443.

Hormillosa, C. (1993). VALENCE, Version 2.00. Institute For Materials Research, McMaster University.
Kendall, K. R., Navas, C., Thomas, J. K. \& Zur Loye, H. C. (1996). Chem. Mater. 8, 642-649.
Ketatni, M., Mentre, O., Abraham, F., Kzaiber, F. \& Mernari, B. (1998). J. Solid State Chem. 139, 274-280.

Porob, D. G. \& Guru Row, T. N. (2000). Chem. Mater. 12, 3658-3661.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sinclair, D. C., Marinou, E. \& Skakle, J. M. S. (1999). J. Mater. Chem. 9, 2617-2621.
Sinclair, D. C., Watson, C. J., Howie, R. A., Skakle, J. M. S., Coats, A. M., Kirk, C. A., Lachowski, E. E. \& Marr, J. (1998). J. Mater. Chem. 8, 281-282.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK5000). Services for accessing these data are described at the back of the journal.

